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Abstract

If an image tells a story, the image caption is the briefest
narrator. Generally, a scene graph prefers to be an omni-
scient “generalist”, while the image caption is more will-
ing to be a “specialist”, which outlines the gist. Lots of
previous studies have found that a scene graph is not as
practical as expected unless it can reduce the trivial con-
tents and noises. In this respect, the image caption is a
good tutor. To this end, we let the scene graph borrow the
ability from the image caption so that it can be a specialist
on the basis of remaining all-around, resulting in the so-
called Topic Scene Graph. What an image caption pays
attention to is distilled and passed to the scene graph for
estimating the importance of partial objects, relationships,
and events. Specifically, during the caption generation, the
attention about individual objects in each time step is col-
lected, pooled, and assembled to obtain the attention about
relationships, which serves as weak supervision for regular-
izing the estimated importance scores of relationships. In
addition, as this attention distillation process provides an
opportunity for combining the generation of image caption
and scene graph together, we further transform the scene
graph into linguistic form with rich and free-form expres-
sions by sharing a single generation model with image cap-
tion. Experiments show that attention distillation brings
significant improvements in mining important relationships
without strong supervision, and the topic scene graph shows
great potential in subsequent applications.

1. Introduction

A picture is worth a thousand words. However, only a
few person prefers to know all of the “thousand words”,
while others would like to be informed the “topic words”.
Therefore, the scene graph and the image caption are used
for conveying the image contents out of different purposes.
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Figure 1. Comparison of the (a) traditional general scene
graph, and the (b) topic scene graph generated under the
guidance of attention in the image caption, which gives pri-
ority to the important relationships (highlighted nodes and
edges), and expresses a relationship in the style of natural
language.

Concretely, the scene graph [20] consists of objects in an
image and the relationships between pairs of objects. A se-
ries of studies have tried to generate the scene graph and
realize its potential in advanced intelligence tasks, e.g., vi-
sual Q&A [2, 47], visual reasoning [44], and vision-and-
language navigation (VLN) [53], etc. Nevertheless, as
pointed in [25, 35, 52], the scene graph is helpful only if
it is informative, while the current generated scene graph
with such a lot of noises does not meet this standard. This is
mainly due to the explosive combination possibility of two
objects [52, 65], which brings the double-edge effect that
the scene graph is comprehensive but the key information
is overwhelmed by massive trivial details. It is necessary
and practical to make the scene graph well-circumscribed
between important and trivial contents. Fortunately, the im-
age caption exactly shows this ability and is a good teacher
from which a scene graph should learn.

In the context of scene graph generation, few researches
devote endeavor to discovering the important relationships,
which is a meaningful step for restricting the scale of the
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scene graph when it is used for downstream tasks. The
most popular approach is to keep the relationships with
large products of the predicted subject, object, and predi-
cate scores. However, this product measures the accuracy
of prediction rather than the importance. Yang et al. [58]
and Lv et al. [33] either use a light-weight relationship pro-
posal network to extract some probably related pairs, or pre-
dict an attention score for each relationship, based on the
perspective that annotated relationships are the important
ones. This may be questionable because the mainstream
scene graph datasets (e.g., Visual Genome [22]) are suffered
from serious long-tailed problem [6, 46] and the annotated
pairs (head pairs) are usually trivial ones [52]. To more pre-
cisely define what is important relationship, image caption
is found helpful because a caption almost exactly reveals
what humans think important [14], as shown in Figure 1.
Consequently, Yu et al. [65] and Wang et al. [52] learn to
mine the important relationships under the strong supervi-
sion from the important relationship annotation which is ob-
tained under the guidance of captions. But this process need
to transform the captions into triplets first and then align two
groups of heterologous triplets, which is so expensive and
complicates the scene graph generation.

In this work, we propose to let the scene graph learn the
important relationships from the image caption in an eco-
nomical way, resulting in the Topic Scene Graph. The
importance of relationship is estimated by distilling the vi-
sual attention during the image caption generation, which
is treated as the weak supervision. Specifically, most ad-
vanced image captioners are able to fix its gaze on the cor-
rect object regions. We apply an image captioner and col-
lect the first-order attention information with respect to the
object regions, which are used for assembling the second-
order attention about the relationships. In this way, we ac-
tually transform humans’ attention into a new form, con-
verting it from the concern about individual to that about
relational events. The second-order attention is used as the
weak supervision for guiding the estimation of the impor-
tance of the relationship. In this way, strong supervision is
no longer necessary.

Furthermore, as the attention distillation process makes
it possible to generate the image caption and scene graph
simultaneously and both of them are the description of an
image, why not generating them with a single model? It
is noted that the most popular scene graph dataset, Vi-
sual Genome (VG) [22] of world scale contains more than
40,000 types of relationships which are originally extracted
from humans’ language, while the traditional definition of
scene graph treats the relationship recognition as predicate
classification and makes most of the relationships filtered,
which is harmful to the diversity of relationship descrip-
tion. What is worse, there exist huge interior differences
in some certain predicate classes, e.g., the appearance of

two relationship triplet instances for the predicate class rid-
ing, person-riding-horse and dog-riding-skateboard are to-
tally different. It is difficult to clearly define the semantic
boundaries between different predicates. Inspired by [21],
we redefine the scene graph as the set of short relational sen-
tences. In this way, a shared captioning module can be used
for the so-called linguistic scene graph generation and im-
age captioning at the same time.

2. Related Work
Scene Graph Generation (SGG) and Visual Relation-

ship Detection (VRD) focus on understanding the relation-
ships between objects. Early studies [10, 42] treat each
distinct combination of object categories and relationship
predicates as a distinct class. Lu et al. [32] formally define
the VRD task and address the object and predicate clas-
sification separately. Recent state-of-the-art VRD works
[8, 18, 26, 34, 38, 64, 66, 71, 72, 73] pay attention on the
prediction of each relationship triplet independently. The
scene graph which describes the image faithfully from a
bird’s-eye view is proposed in [20]. After that, a batteries
of studies contribute to generation of a high-quality scene
graph. Message passing mechanism [55] has been proved
effective and its variants are widely adopted in [27, 28].
The latest essential practice achieves more promising re-
sults through constructing reasonable context among ob-
jects and visual relationships [31, 39, 47, 51, 58, 70], or
taking the advantage of external knowledge and common-
sense [6, 13, 67, 69]. Besides, Zhang et al. [74] propose
contrastive losses to resolve the related pair configuration
ambiguity. Zareian et al. [68] creatively consider SGG as
an edge role assignment problem. Tang et al. [46] diversify
the predicted relationships through addressing the causal ef-
fect. Most of these works struggle to fit the VG dataset
but always overlook the fact that the scene graph annotation
suffers from serious long-tailed problem and the valuable
relationships are usually overwhelmed by trivial ones. This
problem is general because of the reporting bias [11] and
should not be blamed on a particular dataset. A growing
number of works are considering how to make the scene
graph more practical. Liang et al. [29] prune the dominant
and easy-to-predict relations while keeping the visually rel-
evant relations in VG. Lv et al. [33] estimate the importance
of relationships with an attention module, but actually they
still think that the annotated relationships are semantically
important, which may not be true. Yu et al. [65] and Wang
et al. [52] provide annotations with relationships of humans
interest under guidance of image caption and explicitly use
them as supervision. However, only semantically impor-
tant relationships are detected in [65], which is not enough
for a comprehensive scene graph. In this work, we distill
the attention from image caption as weak supervision rather
than constructing the high-cost annotation of important re-
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lationships, and reasonably estimate the importance of all
relationships so that the number of remaining relationships
are controllable.

Image captioning and scene graph. Compared to the
scene graph, the image caption is usually treated as the fi-
nal presentation to humans (for interaction). Restricted by
the length, an image caption usually contains the most im-
portant contents in an image [14], but misses details. Some
researchers propose the dense captioning task [19] which
generates diverse but aimless region-level descriptions pas-
sively. Our proposed topic scene graph is naturally a struc-
tured representation of an image, and is especially able to
actively estimate the importance of the image contents.

Early studies on image captioning are rule or template-
based [45, 61]. Modern captioning models have achieved
great progress benefiting from encoder-decoder framework
[49], attention technique [4, 7, 15, 17, 24, 37, 48, 56, 60]
and RL-based training objective [41]. Our work dis-
tills the attention from image caption. Besides, as the
scene graph contains much semantic information, lots of
works have tried to incorporate it into captioning models
[5, 12, 25, 35, 57, 59, 62, 63]. Inspired by this direction, we
propose to generate linguistic scene graph, and creatively
let the scene graph benefit from image caption.

3. Approach

3.1. Overview

Given an image I , its scene graph G consists of a set of
objects (nodes) O = {oi | i ∈ [1, n]} with the assigned
class labels C = {ci | i ∈ [1, n], ci ∈ C} and the corre-
sponding bounding boxes B = {bi | i ∈ [1, n], bi ∈ R4},
and a set of relationships (edges) R = {rk | k ∈ [1,m]}.
Conventionally, each relationship rk is a triplet of the start
node oi, the end node oj , and the relationship label xij ∈ R
where R is the set of predicate types. These relationships
are disordered. Thinking of the limitation of this represen-
tation, we redefine the relationship rk as a relational caption
in the form of word sequence (ykt)

TR
t=1, where ykt ∈ V and

V denotes the vocabulary. t is the positional index of the
word in the sequence and TR is the sequence length. More
importantly, these relationships are sorted according to their
importance. Specifically, as depicted in Figure 1 (b), the de-
tected objects are used for generating the relational captions
and the image caption (wt)

TC
t=1 (wt ∈ V and TC is the cap-

tion length), during which the subjective interest (attention)
α is collected from the image caption. The α is used for
the estimation of importance scores of the relationships.

In the following parts, we will describe the generation of
the image caption (Sec. 3.2) and the linguistic scene graph
(Sec. 3.3) using a shared captioning module. Then we will
elaborate on importance score estimation and attention dis-
tillation for obtaining the final topic scene graph (Sec. 3.4).

3.2. Captioning Module

In this work, we adopt two types of state-of-the-art cap-
tioning models, the Up-Down model [1] based on LSTM
[16], and the Transformer [48]. The Up-Down model com-
prises of an attention LSTM layer and a language LSTM
layer. Specifically, the detected objects are represented
by their visual features V = [v1, . . . ,vn] ∈ Rdv×n and
bounding boxes [b1, . . . , bn] ∈ R4×n. The object visual fea-
tures are firstly transformed to V ′ = [v′

1, . . . ,v
′
n] ∈ Rdl×n

with a lower dimension:

v′
i = Wvvi + bv, v′

i ∈ Rdl , (1)

where Wv ∈ Rdl×dv and bv ∈ Rdl are trainable param-
eters. At each time step t, the previous hidden state of
the language LSTM h2

t−1 is concatenated with the mean-
pooled image feature v = 1

n

∑
i v

′
i and the previous word

embedding et−1 = Wewt−1, and fed into the attention
LSTM:

h1
t = LSTMAtt([h

2
t−1;v; et−1],h

1
t−1), h1

t ∈ Rdh , (2)

where [; ] denotes the concatenation and We ∈ Rde×|V|

is the embedding matrix. The wt−1 stands for the |V|-
dim one-hot vector where the wt−1-th element is 1 in prac-
tice. The attention about the objects α = [α1, . . . ,αTC

] ∈
Rn×TC is calculated as:

zi,t = wT
a tanh (Wvav

′
i +Whah

1
t ),

αt = softmax(zt),
(3)

where wa ∈ Rda×1, Wva ∈ Rda×dl , and Wha ∈ Rda×dh

are trainable parameters. Finally, the attended image visual
feature v̂t =

∑n
i=1 zi,tv

′
i and h1

t are used as the input of the
language LSTM, which predicts the conditional distribution
over the possible word:

h2
t = LSTMLang([v̂t;h

1
t ],h

2
t−1), h2

t ∈ Rdh ,

p(wt|w1:t−1) = softmax(Woh
2
t + bo),

(4)

with trainable parameters Wo ∈ R|V|×dh and bo ∈ R|V|.
As for the Transformer model, it consists of an encoder

and a decoder, both of which contain a stack of layers. We
provide details in the Supp. and especially explain how to
extract the attention on objects here. For captioning task,
the transformed visual features V ′ are fed into the encoder
and we get the output V ∗ ∈ Rdtr×n. For each decoder
layer in the decoder, it contains a multi-head self-attention
layer and a multi-head cross-attention layer. All the word
embeddings E are fed into the self-attention layer to get
the output E∗ ∈ Rdtr×TC . In each head j ∈ [1, H], the
attention weights αj ∈ Rn×TC about objects are computed
by:

αj = softmax

(
V ∗TE∗
√
dtr

)
. (5)

We average the αj across H heads and obtain the final α.
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Figure 2. The framework of our method. The detected objects and the object pairs are fed into a shared captioning module
to generate the image caption and relational captions which form a linguistic scene graph. During the training stage, the
attention information is collected, pooled over multiple time steps, and assembled to produce the second-order attention β
about the relationships. Simultaneously the importance scores η of the relationships are also estimated, and then regularized
by β. In the testing phase, the estimated importance scores are used for generating the final topic scene graph.

3.3. Linguistic Scene Graph

In this part, we share the captioning module to make it
applicable to relational captioning so that a linguistic scene
graph is realizable. Following the general scene graph gen-
eration process, we build combinations of N detected ob-
jects and obtain O(N2) object pairs. For the subject oi
and the object oj , we extract their union visual feature
vij ∈ Rdu which contains rich context information by ap-
plying ROI pooling [40] with the union box of bi and bj . Be-
sides, as the relative position between two objects is found
as effective prior information, we follow [38] to build the
geometry feature:

gij =

[
xj − xi√
wihi

,
yj − yi√
wihi

,

√
wjhj

wihi
,
wi

hi
,
wj

hj
,
bi ∩ bj
bi ∪ bj

]
, (6)

where the (x, y) is the center position and w and h denote
width and height of a box. It is further projected to a 64-dim
feature and concatenated with vij to obtain the final union
feature v′

ij ∈ Rdl :

v′
ij = Wu[vij ; (Wggij + bg)] + bu, (7)

where Wu ∈ Rdl×(du+64), bu ∈ Rdl , Wg ∈ R64×6, and
bg ∈ R64 are trainable parameters.

Different from the image captioning which should pay
attention to all objects, relational captioning focuses on two
designated objects. Specifically, for the Up-Down model,
only the v′

i, v
′
j and v′

ij are used for decoding. For the Trans-
former, all object features are fed into the encoder to con-
struct contextual information V ∗, but only the v∗

i , v∗
j and

v′
ij are fed into the decoder.

3.4. Topic Scene Graph

With the attention about objects provided by image cap-
tioning, we propose to assemble it to obtain attention about
the relationships, which is used as the weak supervision to
guide the estimation of the importance of the relationships.

Suppose that there are m relationships. We first esti-
mate the importance score for each relationship consisting
of subject oi and object oj . Specifically, as depicted in the
top middle part in Figure 2, we concatenate the v′

i, v
′
j , v′

ij

and the semantic embeddings of the subject and object cat-
egories, ei, ej ∈ Rdsem , to form a query qij , and compute
the key using the global feature v:

qij = f([v′
i;v

′
j ;v

′
ij ; ei; ej ]) ∈ Rds , (8)

k = g(v) ∈ Rds , (9)

where f and g are two learnable linear transformation func-
tions. The estimated importance score sij is calculated as
the inner product of the query and key and then normalized
with softmax function:

sij =
qT
ijk√
ds

, (10)

η = softmax(s) ∈ Rm. (11)

On the other hand, we have the attention information α
with respect to individual objects, which is used to assem-
ble the attention β with respect to relationships. As shown
in the bottom left part (with gray background) in Figure 2,
firstly, we gather the attention score for each object over
multiple time steps with a pooling function P , resulting in
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γ ∈ Rn. Then the second order attention for a relationship
is assembled as:

δij = γi + γj , β = softmax(δ) ∈ Rm. (12)

Finally, the estimated score η is regularized with the in-
duced second-order attention β via KL-divergence.

3.5. Optimization

The optimization process is divided into two stages.
In the first stage, given a single ground truth image
caption (wt)

TC
t=1 and m ground truth relational captions

[(ykt)
TR
t=1]

m
k=1, the captioning module is optimized with the

traditional cross-entropy loss consisting of the image cap-
tioning part and the relational captioning part:

LCE =

TC∑
t=1

− log p(wt|w1:t−1)

+ λ

(
1

m

m∑
k=1

TR∑
t=1

− log p
(
ykt|yk1:k(t−1)

))
,

(13)

where λ is the balance parameter. In the second stage,
the attention distillation module is optimized with the KL-
divergence loss:

LKL = KL(η||β). (14)

Although the reinforce algorithm such as SCST [41] is
widely used for further optimizing the captioning models,
some researches [75] found that SCST actually does harm
to the text-to-image grounding because it encourages the
n-gram consistency rather than visual semantic alignment.
As our framework has a high demand for superior ground-
ing performance, we do not optimize the captioning module
with SCST in this research and leave it to future works.

4. Experiments
4.1. Datasets and Evaluation Metrics

Datasets. There is no existing dataset with both the im-
age caption and relational caption. Inspired by [21], we re-
fer to their data construction procedure to collect the rela-
tional caption, and further collect the image caption, as well
as the important relationship annotation which is only for
training the upper bound models and evaluation. Specifi-
cally, we use the 51,208 images in both VG and MSCOCO
[30] datasets which have both relationship and image cap-
tion annotation. Firstly, we cleanse the VG dataset and keep
a large scale vocabulary including 3,000 object categories
and 800 attributes. The relationships about the objects be-
yond these categories are filtered. To obtain the important
relationship annotation, we apply the Scene Graph Parser
[43] to extract the relationships from the image caption, and

align them with the annotated ones by matching their sub-
ject and object WordNet [36] synsets. Finally we convert
the remaining relationships into sentences. It is worth men-
tioning that we do not make a category-wise vocabulary for
relationships, but keep the relationships in their original free
and open form. To further enrich the concepts, the attributes
of each object are randomly selected to add to the sentences.
We obtain 35,928 images for 29,928/1,000/5,000 splits for
train/validation/test sets respectively and 11,437 vocabular-
ies (including 3,000 object categories and 800 attributes).

Evaluation metrics. We use BLEU, METEOR, CIDEr-
D, ROUGE-L, and SPICE for image captioning. For
relational captioning, we refer to [19] and [21] and
use the following metrics. (1) mean Average Preci-
sion (mAP): it uses METEOR score [9] with thresh-
olds {0, 0.05, 0.10, 0.15, 0.20, 0.25} for language and IoU
thresholds {0.2, 0.3, 0.4, 0.5, 0.6} for localization. Only the
pair whose subject and object have IoUs greater than thresh-
olds is a true positive sample. The mAP is obtained by av-
eraging across all the combinations of language and local-
ization thresholds. (2) image-level recall (Img-Lv.Recall):
it ignores the localization and evaluate the recall of the bag
of predicted relational captions.

Besides, in order to evaluate whether the important re-
lationships are properly found, we refer to the metrics in
traditional scene graph generation [52, 55], i.e., Recall@K
where K is set to 20, 50, and 100. Under this metric, only
the important relationships are regarded as ground truth and
the top K relationships are evaluated, which means that the
predicted relationships should be sorted. A relational cap-
tion is correct only if the following two conditions are sat-
isfied: (1) both the subject and object have IoUs greater
than 0.5, and (2) the METEOR score is greater than the
thresholds above. We average the recall on different lan-
guage thresholds. To evaluate the performance on discov-
ering correct important object pairs, we derive the Recall-
ns@K metric which only requires the above first condition
and does not consider the METEOR scores.

4.2. Implementation Details

We firstly train the faster-RCNN [40] detector with the
ResNeXt-101 [54] backbone on the objects of 3,000 cat-
egories of our dataset. During the scene graph training,
the parameters of the object detector are frozen. More de-
tails are given in the Supp. Source codes are available
at https://vipl.ict.ac.cn/resources/codes
or http://www.kennethwong.tech/.

4.3. Experiments on Linguistic Scene Graph

In our method, a shared captioning module is trained
for image captioning (IC) and relational captioning (RC),
which has never been explored before. We start with ex-
ploring the effectiveness of this practice. To this end, we
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Table 1. Image captioning results. B1, B4, M, R, C, S de-
note BLEU-1, BLEU-4, METEOR, ROUGE-L, CIDEr-D,
and SPICE respectively. “-ICRC” denotes that the model is
trained with image captions and relational captions.

Model λ B1 B4 M R C S
UD [1] - 69.8 29.6 25.0 52.3 94.1 18.0

UD-ICRC

0.1 71.1 30.4 25.1 52.6 95.3 18.3
0.3 70.7 30.0 24.9 52.5 94.6 18.1
0.7 70.5 30.1 25.0 52.4 94.8 18.2
1.0 71.0 30.0 24.8 52.5 93.5 17.9

Transformer [48] - 68.8 26.8 23.5 50.4 85.6 17.3
Transformer-ICRC 0.7 70.3 28.6 24.4 51.7 91.5 18.0

adjust the balance parameter λ to control the proportion of
the loss of the relational captioning in the final loss func-
tion . Results under more value settings are provided in
Supp. The evaluation is divided into two parts. On the
side of image captioning, the baselines are Up-Down (UD)
and Transformer, which are trained only using the image
captions. We compare the baselines to the UD-ICRC and
Transformer-ICRC trained with the image captions and re-
lational captions. From Table 1, we observe that mixed
training actually brings benefit to the image captioning, but
as the λ increases, this benefit will slightly drop. It sug-
gests that mixed training is feasible despite the fact that the
assembled relational captions will bring some noises.

On the side of relational captioning, we use TriLSTM
[21], UD-RC, and Transformer-RC as baselines, which are
trained only using the relational captions. The TriLSTM
is re-implemented and trained on our dataset. The rela-
tional captions are sorted by the product of the probabili-
ties of the generated words, i.e., likelihoods. As shown in
Table 2, compared to the TriLSTM, both the UD-RC and
UD-ICRC outperform it obviously. Comparing the UD-RC
with UD-ICRC, we find that as the λ increases, the UD-
ICRC roughly performs better on the image level metrics,
and surpasses the UD-RC baseline when λ is greater than
0.7. However, the performance drops on the important re-
lationship recall metrics. We think that it is because the in-
creasing λ makes the model fit the relational captions data
better, but the increasing sentence likelihood loses its dis-
crimination and is less suitable for importance estimation.
It also suggests that neither the sentence likelihood of the
relational caption nor the score product of the traditional
triplet are unstable for importance estimation. As for the
Transformer, mixed training has little impact on the perfor-
mances. With a comprehensive consideration on the perfor-
mances of the two tasks, we set the λ as 0.7 and freeze the
UD-ICRC / Transformer-ICRC models for generating the
topic scene graph in the following experiments.

4.4. Experiments on Topic Scene Graph

As we know this is the first time to study the topic
linguistic scene graph generation. We replace some key
components to show the effectiveness of our proposed

model (UD-ICRC-attn) and facilitate the ablation study. As
we have the important relationship annotation, we train
the upper bound models named as UD-ICRC-label and
Transformer-ICRC-label under the supervision of the anno-
tated important relationships with binary cross entropy loss.
The results are shown in Table 3.

Pooling function. The pooling function P is used for
gathering attention information over multiple time steps for
each individual object. We compare two functions: max
pooling (MAX) and mean pooling (MEAN). Comparing
the 4th row and the 5th row in the UD-ICRC-attn section,
the max pooling function is much more effective than mean
pooling. It is reasonable because we want to maximize the
scores of the objects which are mentioned in the image cap-
tions, while the mean pooling reduces the attention scores
and makes it hard to shed light on the key objects.

Input features. We try to use different concatenated
features for obtaining the query q when estimating the im-
portance scores, including the union features (U), subject
and object features (SO), subject, object, and union fea-
tures (SOU), and subject, object, union features together
with the semantic embeddings of subject and object cate-
gories (SOUS). By comparing the 1st∼3rd rows and the 6th
row in the UD-ICRC-attn section, and the rows in the UD-
ICRC-label section, it is found that the SOU significantly
improves the performances compared with U and SO, sug-
gesting that these three types of features cannot be used in-
dependently, as the SO provides information about objects
and the U provides relative spatial information. The seman-
tic embeddings bring slight improvement, and it is not as
obvious as that in the upper bound models.

Masking non-noun words. When gathering the atten-
tion information, we explore whether all the words of a sen-
tence should be considered or not. Different from consid-
ering all words, we try an alternative way that only the at-
tention of noun words are collected since they are probably
to be correctly grounded to the regions, and other words are
masked. To this end, we apply the NLTK POS tagger [3]
to filter out the non-noun words. Comparing the 5th row
and 6th row in the UD-ICRC-attn section, it is interesting
to find that masking the non-noun words does harm to the
performance instead. This phenomenon may imply that the
context plays a crucial role and the non-noun words would
also contribute to the attention of the center nouns.

Overall, compared with the TriLSTM, UD-ICRC and
Transformer-ICRC baselines, the application of our atten-
tion alignment module significantly improves the perfor-
mances, and obviously reduces the gap between the base-
lines and the upper bound. The best configuration is to use
the SOUS input features, max pooling function and collect
the attention from all words. It’s noted that our method does
not need the complicated collection of important relation-
ship annotation, but can still provide the useful important
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Table 2. Results of relational captioning (%). “-RC” denotes that the model is only trained with the relational captions. “-
ICRC” denotes that the model is trained with image captions and relational captions. R-ns means Recall-ns. Img-Lv. Recall
means the image level recall.

Model λ mAP METEOR Img-Lv. Recall R@20 R-ns@20 R@50 R-ns@50 R@100 R-ns@100
TriLSTM [21] - 3.80 30.21 72.72 1.31 3.20 3.93 9.58 8.42 20.88

UD-RC [1] - 5.61 42.40 88.77 3.02 3.71 10.46 12.92 22.97 28.90

UD-ICRC

0.1 4.84 38.31 84.81 3.45 4.43 10.22 13.99 20.77 29.00
0.3 5.14 40.36 86.93 3.39 4.18 9.87 12.88 21.57 27.99
0.7 5.43 42.26 89.15 2.75 3.49 9.97 12.40 20.76 26.46
1.0 5.41 42.75 89.52 2.31 2.90 8.09 10.20 19.97 25.56

Transformer-RC [48] 5.26 41.62 88.65 2.11 2.73 6.83 9.12 16.36 21.91
Transformer-ICRC 0.7 5.15 41.63 88.64 2.05 2.70 6.86 9.19 16.21 21.91

Table 3. Results (%) comparison on discovering the important relationships. “Feat.” denotes different input features. “P”
denotes the pooling function. “Mask” denotes masking the non-noun words (✓) or not (✗).

Feat. P Mask R@20 R-ns@20 R@50 R-ns@50 R@100 R-ns@100 mean
TriLSTM - - - 1.31 3.20 3.93 9.58 8.42 20.88 7.89
UD-ICRC - - - 2.75 3.49 9.97 12.40 20.76 26.46 12.64

UD-ICRC-attn

U MAX ✗ 7.27 10.53 17.12 24.10 30.44 42.22 21.95
SO MAX ✗ 7.49 10.88 20.61 28.79 37.06 51.07 25.98

SOU MAX ✗ 15.71 21.80 28.85 39.39 41.09 55.73 33.76
SOUS MEAN ✓ 2.74 4.53 8.76 13.71 19.27 28.05 12.84
SOUS MAX ✓ 10.72 15.43 21.59 30.26 34.43 47.34 26.63
SOUS MAX ✗ 15.46 21.81 29.55 40.72 41.14 55.68 34.06

UD-ICRC-label

U - - 13.04 17.35 25.25 33.28 36.72 49.22 29.14
SO - - 30.14 38.86 41.45 53.95 51.55 67.70 47.28

SOU - - 32.17 41.38 43.57 56.68 53.65 70.81 49.71
SOUS - - 34.39 45.13 46.03 60.97 54.60 72.44 52.26

Transformer-ICRC - - - 2.05 2.70 6.86 9.19 16.21 21.91 9.82
Transformer-ICRC-attn SOUS MAX ✗ 17.52 24.96 31.88 44.46 43.71 61.10 37.27
Transformer-ICRC-label SOUS - - 25.79 34.68 39.06 53.02 48.76 66.43 44.62

relationships. We observe that the attention alignment mod-
ule is more effective for the Transformer, which may imply
that the attention in Transformer is more precise.

4.5. Qualitative Results

In Figure 3 (b), we visualize the attention about the ob-
jects of each word (the purple heat map) during captioning
and the pooled attention over all words (the reddish brown
heat map). It can be observed that although the caption may
be not so precise, the objects are still correctly attended
(the 15 woman and 3 bus in the first sample, the 1 court,
6 person, and the 16 tennis racket in the second sample).
The max pooling function highlights the mentioned objects
in the caption. It’s also found that an object can be acti-
vated by several words, which gives an explanation for the
performance drop when masking the non-noun words. In
Figure 3 (c), we draw the scores of relationships for sorting.
All the relationships are firstly sorted according to the as-
sembling attention scores β induced from image caption,
and then their η scores and the sentence likelihoods are
drawn, which are used for sorting by UD-ICRC-attn and

UD-ICRC respectively. The line charts show that the pre-
dicted η scores have a similar trend with the β and therefore
it can correctly rank the relationships according to their im-
portance. However, the sentence likelihoods do not show
this trend, suggesting that these scores (including the prod-
uct scores used in traditional scene graph) are irrelevant to
the importance of the relationships. In Figure 3 (d-e), we
also compare the topic linguistic scene graph and the tra-
ditional scene graph from the motifs [70]. The topic lin-
guistic scene graph focuses on the relationships of humans
interest which are more important in the images. Besides,
the scene graph of linguistic style allows the relationships
to be expressed in a natural way with more suitable words,
despite that the given detected object categories may be not
so appropriate in the language context, e.g., in the first ex-
ample, the 7 photograph is expressed as station in the rela-
tionships.

4.6. Topic Scene Graph for Retrieval

As the topic scene graph provides relationships relevant
to the major events in an image, it can be utilized for image
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7 3 15 2

topic scene graph:
7-3: the station has a bus
3-15: the bus is next to the woman
15-3: the walking woman is next to the bus
7-15: the station is behind the woman
2-15: the bus parked near the bus

14 3 13 9

80 2

traditional scene graph (motifs):
14-3: window on bus
9-13: roof has sun
13-3: sun on bus
13-8: sun on pole
0-2: ad on bus

(a) (b) (c) (d) (e)

topic scene graph:
6-16: the person is holding the tennis racket
6-8: the person is holding the racket
6-1: the person is on the court
6-2: the person is on the land
1-16: the court has the tennis racket

traditional scene graph (motifs):
6-4: person has head
4-6: head of person
3-4: hair on head
4-3: head has hair
5-7: leaf on plant

6 3 416 8 1 2 6 7 5

Figure 3. The qualitative results. (a) The objects with their bounding boxes and ids. (b) The attention about the objects during
caption generation and the pooled attention are visualized. Darker colors indicate larger weights. (c) Importance scores of
the relationships are drawn. Along the X-axis, the relationships are sorted by the β scores in a descending order. All the lines
are smoothed. (d-e) The scene graph from our method and motifs [70] consisting of top 5 relationships are shown.

Table 4. The image retrieval results using top 1 relation-
ships. We use the recall at K (R@K, higher is better) and
the median rank of the target image (Med, lower is better).

Model R@1 R@5 R@10 Med
TriLSTM 1.73 7.47 12.83 135.33
UD-ICRC 5.67 20.40 31.73 27.33

UD-ICRC-attn 9.73 31.67 46.13 12.33
UD-ICRC-label 17.77 49.17 67.37 5.67

retrieval [23, 50]. We adopt the classic image-text match-
ing model SCAN [23]. 1,000 images are randomly chosen
from the test set, and their top 1 or 5 relationships are col-
lected as query for retrieving correct target images. The
recall (R@K, K is 1, 5, 10) and the median rank of the cor-
rectly retrieved images [21] are used as the metrics. We
run through this process 3 times and report average results.
Significant improvement brought by attention alignment is
observed in Table 4. In addition, some major events can
be decomposed into multiple relationships, e.g., the major
events of the query image in Figure 4 (left column) can
be expressed with two relationships which are the top two
given by our topic scene graph. If one directly uses the
original image or traditional scene graph to retrieve similar
images, the results may be not the desired ones. The pro-
posed topic scene graph provides fine-grained descriptions
of major events and makes it possible to designate the tar-
get content to be retrieved, e.g., to retrieve woman talking
on telephone or woman sitting on bench.

the woman is talking 
on telephone

the woman is sitting 
on bench

Figure 4. Two important relationships given by topic scene
graph of the left image are used to retrieve similar images
respectively. The results are shown on the right column.

5. Conclusion
In this work, we propose to generate the scene graph

jointly with the image caption so that it can not only un-
derstand the image comprehensively, but also balance the
important and trivial contents. The attention information
from the image caption provides guideline to emphasize the
important relationships. In addition, we generate the scene
graph together with the image caption using a shared cap-
tioning module, making it express in a more natural style.
Experimental results show the advantages of the proposed
method in both performance and its feasibility in mining
the important relationships without strong supervision. Be-
sides, the topic scene graph has shown its practicality for
controllable and fine-grained retrieval.
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